Effects of β-aminopropionitrile and Exercise on Type I Collagen **Morphology in Murine Bone**

Max A. Hammond¹, Joseph M. Wallace^{1,2}

¹Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN

²Indiana University-Purdue University at Indianapolis, Department of Biomedical Engineering, Indianapolis, IN

Type I Collagen

Right-Handed Collagen Triple Helix

- · Lysyl oxidase (LOX) catalyzes crosslink formation stabilizing collagen fibril
- β-aminopropionitrile (BAPN) toxin blocks LOX active site reducing crosslinking
- Well understood mechanism allowing
- investigation of role of enzymatic crosslinks in collagen morphology and bone mechanics

Exercise

- Loading increases size and changes bone physicochemical properties
- Post-yield improvements and altered gene expression implicate changes in collagen

Study Contribution

 Detect morphological changes in collagen with reduced crosslinks, exercise, and affects of disease in the presence of exercise

INTRODUCTION

----a

Enzymatic Crosslink

scillating Surface Feature: Axial D-Periodicity

 If bone mechanical integrity is rescued, exercise could be a potent non-invasive treatment for collagen-based diseases.

HYPOTHESIS

Disease-induced alterations to collagen's nanoscale morphology can be compensated for via exercise

MATERIALS AND METHODS

Animals

- 8 wk old female C57BL/6 mice
- · Cage activity (Sed) or exercise (Ex)
- 30 min/day, 12 m/min, 5° incline, 21 consecutive days
- · 200 µl subcutaneous injection
- PBS or 300 mg/kg BAPN in PBS
- Sacrificed at 11 weeks (n=4-5 per group) · Femora and tibiae harvested, stored at -
- 20°C

AFM Imaging and Analysis

- · Left femur polished, demineralization with EDTA, 4-5 locations per bone
- 3.5 µm x 3.5 µm images in air
- · D-periodic spacing from 2D Fast Fourier Transform (2D FFT) power spectrum
- 15-20 fibrils/location, ~70 total/sample

Nanoindentation

- · Right femur polished, 5 locations per bone, hydrated sample
- · Diamond Berkovich indenter
- 300 µN/s to 3000 µN, held for 10 sec, and unloaded at 300 µN/s
- Reduced modulus (E_r) and hardness (H) using Oliver-Pharr method

Raman Spectroscopy

- Left tibiae, 5 locations per bone
- · Distal to tibia-fibula junction
- · Unprocessed hydrated surface
- Gaussian fit for phosphate peak FWHM

· Band area ratios calculated, linear baseline

Reference Point Indentation (RPI)

- · Distal tibia used after Raman
- · Sample hydrated in PBS bath
- 2 N indents for 10 cycles, BP3 probe
- · Cycle by cycle analysis using MATLAB script

Statistical Analysis

- · Mean comparisons using two-way ANOVA Ex and BAPN main effects
- Transformation if assumptions violated
- D-spacing distribution differences tested with Kolmogorov-Smirnov (KS) tests
- Bonferroni correction for multiple comparisons, p<0.0167 significant

RESULTS					
	<u>RPI</u>		<u>Raman</u>	Nanoindentation	
Group	1 st ID (µm)	IDI (µm)	Crystallinity *	E _r (GPa)	H (GPa)
Sed PBS	35.38 ± 3.87	6.50 ± 0.50	0.0535 ± 0.0003	12.9 ± 1.7	0.63 ± 0.12
Sed BAPN	35.03 ± 1.38	7.51 ± 1.15	0.0537 ± 0.0004	11.4 ± 2.5	0.55 ± 0.16
Ex PBS	40.09 ± 4.83	7.73 ± 2.72	0.0532 ± 0.0004	11.9 ± 3.7	0.58 ± 0.23
Ex BAPN	36.38 ± 4.40	6.89 ± 2.05	0.0540 ± 0.0004	14.2 ± 2.3	0.74 ± 0.19

p<0.05 for BAPN, † p<0.05 for Ex, ‡ p<0.05 for interaction

DISCUSSION

- with BAPN BAPN blocks some LOX active sites reducing
- functional LOX Reduced enzymatic
- crosslinks result D-spacing distribution shifts lower possibly due to the
- compression of spaces normally occupied by crosslinks Downward shift may explain
- increased crystallinity

Distribution Rescued by Ex from BAPN

- BAPN still blocks some LOX Overall LOX increased due
- · Normal level of BAPN-free functional LOX resulting in normal crosslinking
- · Sample size limits power 1st ID trend with Ex possibly

Limitations and Future Directions

- · AFM captures young tissue
- qPCR to verify increase in LOX production

Exercise in the presence of BAPN treatment restores the collagen D-spacing distribution to normal in murine bone.

D-spacing exists as a distribution, mean only describes small part

Mean D-spacing

Distribution Does Not

· Increased production of

enzymes necessary for

bone formation (such as

LOX) in response to load

Enzymatic crosslinks are

number of crosslinking

does not change

sites within a given fibril

Change with Ex

- to exercise

No Change in Mechanics

due to periosteal growth

- Increase in overall LOX with exercise does not alter distribution because
 - Increase sample size for mechanical analysis